

20
th

 ICCRTS

Executable Architectures Concept and Methodology

Paper 002

Topic 1: Concepts, Theory, and Policy

Topic 5: Modeling and Simulation

Topic 9: C2-simulation Interoperability

Mr. Eui Soon Kim

Korea Institute for Defense Analyses

37 Hoegi-ro, Dongdaemun-gu, Seoul 130-871,

South Korea

+82-10-5081-2462 kes3738@naver.com

mailto:kes3738@naver.com

Executable Architectures Concept and Methodology

Mr. Eui Soon Kim

Korea Institute for Defense Analyses
37 Hoegi-ro, Dongdaemun-gu, Seoul 130-871,

South Korea

Abstract

The static architectures are converted into executable architectures for conducting

detailed dynamic behavioral analysis. A survey of research papers show that many

terminologies are referred to and used for the explanation of executable

architectures. This results from the simple definition of an executable architecture.

This paper surveys related papers and suggests a clear definition of an executable

architecture and arranges transition methodologies. Architecture-based analyses

employ the transition of architecture products into intermediate architectures and

then executable models for execution simulation programs. An executable

architecture can then be defined to be the union of an executable model and a

simulation program.

The modeling relation involves the use of Colored Petri Net (CPN), Discrete Event

Simulation (DES) and Unified Modeling Language (UML)/Systems Modeling

Language (SysML). The dynamic relation involves the use of Business Process

Model (BPM), Matrix Laboratory (MATLAB) and Discrete Event System

Specification (DEVS). The simulation relation involves the use of federation,

simulation software, MATLAB and DEVS. The consecutive application of the

modeling, dynamic and simulation relation results in the executable architecture.

The methodology can be classified into three types. This paper also compares the

types and recommends one type for the reuse and composability.

1. Introduction

Static architecture products of the Command and Control (C2) system only show

that operational activities/system functions must be capable of producing and

consuming information and data. They do not provide details on event

sequencing or how or under what conditions information/data is produced and

consumed. They also do not explicitly identify, for each activity/function, the

number (capacity) of roles/systems needed or their ordering for the case when

multiple roles/systems perform the same activity/function (who/which operates

on the first input, who/which operates on the second, etc). Static architecture

products can't be used to carry out a dynamic analysis as to how operational

activities and system functions interact.

To overcome these limitations, operational activities, information, and resources

should be formulated as a dynamic model which would be converted as an

executable simulation (xS). The static architecture products go through modeling

and simulation (M&S) and they become an executable architecture (xA).

The objectives of developing executable architectures of the C2 system from

DoD-developed static architectures are mainly to identify bottlenecks in C2

processes and communications networks and estimate optimal C2 activities

process times and to identify operators in organizations as well as nodes in the

communication systems (as networks) that are overloaded and re-distribute the

C2 activities where appropriate [7].

The use of architecture-based network simulation to study denial of service

attacks is well known. However, M&S techniques can be used to evaluate

intrusion detection systems, place and configure security appliances and to

design appropriate access control mechanisms [12].

A survey of research papers and articles shows that many terminologies are

referred for the explanation of an executable architecture. This results from its

simple definition such as "An executable architecture is a dynamic model of

Activities and their event sequencing performed at Operational Nodes by Roles

(within Organizations) using Resources (Systems) to produce and consume

Information"[1]. The definition needs to be re-defined to have all the properties

and relations with a static architecture. This paper surveys related papers and

suggests a clear definition of an executable architecture. This leads to the

arrangement of Modeling and Simulation (M&S) methodologies.

Typical M&S methodologies can be categorized into the three groups. This paper

compares the three groups and recommends one from reusability and

composability point of view.

2. Concept of an Executable Architecture

2.1 Mixed Terms and Analytical Models

The survey shows that the three terms "architecture, model, and simulation" (in

the right side of Figure 1.) appear with some adjectives (in the left side of Figure

1.) in various forms such as a static architecture, a static model, an integrated

architecture, an integrated model, a dynamic model, an executable architecture,

an executable model, an executable simulation, an executable simulation model

etc. Figure 1 provides the terms in two sets. The arrows and colors denote such

relations.

Figure 1. The Mixed Relations of Terms

The models mentioned above are analytical models depending on the modeling

technique. For example, the models can be a CPN model, BPM, a UML model, a

SysML model, an IDEF model or, other mathematical models.1 A part of them is

correlated to combat simulations and communication/network models. The mixed

terms and related analytical models cause some confusion about how they are

related and what they are. The concept of an executable architecture can be

plainly defined by making these terms and models clear.

2.2 Definition of an Executable Architecture

The framework for M&S as described by Zeigler, et al. [4] establishes entities and

their relationships that are central to the M&S enterprise; see Figure 2. The

1 CPN: Colored Petri Net, IDEF: Integrated Definition

entities of the framework are source system, experimental frame, model, and

simulator; they are linked by the modeling and the simulation relationships [2].

Figure 2. Framework entities and relationships

This framework for M&S can be applied to the mixed terms and analytical models.

Figure 3 depicts the complete mapping among them by introducing a new entity

called an intermediate architecture (mA). The entities are an integrated

architecture (iA), an intermediate architecture, an executable model (xM), and an

executable simulation (xS). These entities are linked by the modeling relation (MR),

the dynamic relation (DR) and the simulation relation (SR). The statics entities of A,

iA and mA, while capturing enormous amounts of information about the

Operational Architecture (OA) and System Architecture (SA) fail to provide a good

vehicle for conducting dynamic “behavioral” analysis of how the systems are

supposed to interact with each other [7].

Figure 3. The Concept of an Executable Architecture

Figure 3 shows the transition of an integrated architecture into an intermediate

architecture by MR. The second step is the transition of an intermediate

architecture into an executable model by DR. An integrated architecture cannot be

directly used to create an executable model. An intermediate architecture makes

this transition easy through the MR transformation. Dynamic elements are added

to a static architecture by DR, which provides a dynamic model.

The third step is the transition of an executable model into an executable

simulation program by SR according to the analysis purpose. Therefore an

executable architecture is the M&S transformation output of an integrated

architecture, which includes both an executable model and an executable

simulation. The relation is as follows:

mA = MR(iA)

xM = DR(mA)

xS = SR(xM)

xA = xM ∪ xS

3. Conversion Methodology for Executable Architecture

The survey shows that there is a wide variety of the modeling relation (MR), the

dynamic relation (DR) and the simulation relation (SR). Firstly, the conversion

methodologies for each relation are reviewed. Secondly, typical consecutive

application methodologies of all the three relations are sought and compared.

3.1 Modeling Relation (MR)

The modeling relation (MR) involves the use of CPN, DES and UML/SysML; see

Figure 4.

Figure 4. The Modeling Relation

Each modeling technique has its own strength and weakness. Each is applied

depending on the analysis target. While CPN is certainly a valuable tool for

understanding the dynamic behavior of a system, it falls short in its ability to

model a combat environment where the rules of engagement (ROE) are changing

and the enemy model is learning and evolving [3]. DES uses numerical analysis to

analyze systems where the state variable(s) changes only at discrete points in

time [4]. DES can be a useful modeling tool for modeling things such as queues

(which may be seen in logistics analysis or missions involving the movement of

information or resources) [4]. The UML and SysML are used to visually express

and communicate system structure and behavior with activity flows and

information exchanges.

3.2 Dynamic Relation (DR)

The dynamic relation (DR) involves the use of BPM, MATLAB/Simulink and DEVS;

see Figure 5. DR takes the charge of populating dynamic properties into mA. They

include event time, event priority, event sequence, etc. The number of personnel,

the number of systems and the performance of systems can be varied in the

dynamic model.

The dynamic model is formulated as three types, which are BPM,

MATLAB/Simulink model and DEVS model. Especially an intermediate architecture

in UML version 2 (UML2.0) can be automatically converted into DEVS models. The

tool for automatic conversion has not yet been developed.

Figure 5. The Dynamic Relation

3.3 Simulation Relation (SR)

The simulation relation (SR) involves the use of federation, simulation software,

MATLAB/Simulink and DEVS; see Figure 6. MATLAB is a high-level technical

computing language and interactive environment for algorithm development,

data visualization, data analysis, and numerical computation. Simulink is good for

modeling and designing dynamic systems (it runs under MATLAB). DEVS provides

a means to evaluate the component behavior in a finite time frame. Incorporation

of DEVS in architecture products will make the design process more tractable and

controllable. As a result DEVS has the characteristics of reusability and

composability.

Figure 6. The Simulation Relation

The executable model in MATLAB/Simulink is automatically converted into the

executable simulation inside the tool. So is the executable model in DEVS.

The executable model in BPM is converted into the executable simulation by

linking combat simulations and communication/network models via the High

Level Architecture (HLA) / the Run-Time Infrastructure (RTI)

. Simulation software can be directly used to convert an intermediate architecture

in CPN model and SysML model into an executable simulation. This will be

further explained in Section 4.

4. Executable Architecture Methodology

The executable architecture can be created by the consecutive application of

three relations, MR, DR, SR; see Figure 7. Each relation has some tools or models

as in Figure 7.

Figure 7. Executable Architecture Methodology

There may be numerically many combinations of three relations. The

combinations can be grouped into three types considering the properties of tools

or models. The three types are as follows:

 ○ Type 1: CPN → BPM → federation

○ Type 2: SysML/UML → MATLAB/DEVS → MATLAB/DEVS

○ Type 3: CPN/SysML → - → simulation software

(Type 3 does not require DR)

4.1 Type 1: CPN → BPM → federation

Type 1 employs CPN as MR, BPM as DR and federation as SR. The federation

consists of BPM, the combat simulation, and the network model linked together

through HLA.

The integrated architecture is converted into an intermediate architecture using

CPN by mapping elements within operational views (OVs) into CPN model

components. The activities from the OV-5 become Transitions in the model [5].

The Places on the model come from Input, Control, Output, Mechanism (ICOMs)

off the OV-5 and OV-6a. The attributes from the OV-7 become Tokens in the

model. The CPN model does not use the System Views (SVs) and the Technical

Views (TVs).

The CPN model is not able to effectively model a variable environment like a

battlefield. CPN models the logical behavior of the system. We may analyze how

data flows through functions, yet we do not have enough information to

determine how long it takes [6].

CPN cannot evaluate the effects of changing individual system performance and

communication systems, or the effects of changing the Concept of Operations

(CONOPs) that guide blue force operations against an enemy that has CONOPs

of its own way. To overcome these limitations CPN is converted into a timed CPN

model or BPM to reflect dynamic properties. A timed CPN model or BPM alone is

restricted from various kinds of analyses. As a result a timed CPN model or BPM

needs a federation of simulations in a different paradigm.

The simulation paradigm will be using combat simulations and C2 models.

Combat simulations are of two kinds - a deterministic model and a stochastic

model. The employment of a federation mode for a deterministic simulation to

the evaluation of target architectures is not as useful as one with a stochastic

model.

As an example, a BPM, EAGLE as a deterministic Army combat simulation and a

communication model using the Network Simulator version 2 (NS-2) are linked

together via RTI of HLA as in Figure 8 [7]2. As another example, a BPM, the agent

based combat simulation such as the System Effectiveness Analysis Simulation

(SEAS) as an Air Force stochastic combat simulation, and the Optimized Network

Engineering Tool (OPNET) are linked together. The entities in one model must

relate to entities in another model. A mapping of relationships is also necessary

to establish how events in one model are related to events in another model.

Figure 8. Modal Interactions and Sample Measures of Merit

4.2 Type 2: SysML/UML → MATLAB/DEVS → MATLAB/DEVS

Type 2 employs SysML/UML as MR, and MATLAB/DEVS as DR and SR.

2 Some of the characteristics of the network model could be cyber and trust characteristics

UML elements are mapped from architecture products. The translation tables as

in Table 1 and 2 show the mapping of various OV/SV products and UML

elements [6].

SysML elements are also mapped from architecture products. The mapping Table

3 shows the mapping of various OV/SV products and SysML elements [8].

The intermediate architecture in SysML/UML can be used as a vehicle for

conveying the necessary information for M&S, but it does not provide dynamic

results. It must be converted into an executable model in dynamic concept to get

useful analysis results.

The elements in Simulink have a close relation to SysML/UML entities, making the

conversion feasible. The mapping relation is provided in Table 4 [9].

Table 1. DoDAF-DEVS extended translation table focusing focusing on OV

Table 2. DoDAF-DEVS extended translation table focusing focusing on SV, TV

The intermediate architecture in UML can also be converted into an executable

model in DEVS. The UML element is mapped to the DEVS element(s) , with the

translation table shown in Table 1 and 2 [6] demonstrating the mapping of

various UML elements and DEVS elements. The reason for choosing the DEVS

formalism as a means to M&S is its expressive power and modularity support.

The automatic tool for converting UML2.0 model into DEVS can be developed

and applied.

An executable model in MATLAB/Simulink and DEVS can be automatically

converted into simulation frameworks.

Table 3. The mapping between the System of systems Architecture Development Process (SoSADP),

DoDAF, and SysML diagrams for an integrated, NCOW architecture

Table 4. Relationship between Simulink concepts and UML elements

4.3 Type 3: CPN/SysML → - → simulation software

Type 3 employs CPN/SysML as MR, and simulation software as SR. In this type

even without DR, the intermediate architecture in CPN/SysML can be directly

converted into executable simulations.

The CPN model can be developed in Arena by using mapping rules provided in

Figure 9 [2]. The SysML diagram can be converted into Extendsim executable

simulation model. The Extendsim is designed specially to represent the flow of

messages and data that traverse the network in a specific sequence of events,

called a thread [8].

Figure 9. Top Level View of the Arena Implementation of the CPN

5. Comparison of Executable Architecture Methodology

Each type of methodology has a different level of granularity for the battlefield

functions. Type 1 uses a federation of BPM and other models for battlefield

functions such as combat, communication, logistics, etc. The functional models

have been developed independently of BPM. As discussed here, the linking of

BPM and the functional models should follow HLA Compliance, mapping

requirements, allocation of mission thread activities to federates, and additional

programming needed to implement the technical interactions among the models,

etc. There remain technical challenges, which when overcome will likely improve

the utility of executable architectures.

Types 2 and 3 can include the battlefield functions within executable architectures.

They must interact with operational scenarios, including force laydown,

operational tempo, potential Tactics, Techniques and Procedures (TTP) changes,

etc.

Type 1 is adequate for a mid and long term period, while Types 2 and 3 are

adequate for a short term period.

These are summarized in Table 5.

Table 5. Comparison of Executable Architecture Methodology

Type Conversion Technique Form Battlefield

Function

Term

MR DR SR

1 CPN BPM HLA federation detailed Mid &

long

2 UML/

SysML

MATLAB/

DEVS

MATLAB/

DEVS

Non-

federation

High-level short

3 CPN/SysML - Simulation

SW

6. Recommendations

The development of executable architectures would better be approached

incrementally. The first step is to develop the models in high level descriptions

down to the totally reusable architecture-based information sets. The second step

is to develop the models to a specific documentation required to answer a

particular question or solve a problem [10]. The third step is to develop the

models in a system engineering level of detail, with enough rigor to inform and

support the test/evaluation and M&S communities.

By modeling communications networks in the form of an "as-is” architecture, an

executable architecture for cyber security can be created. This is asserted in [12]

as follows:

One practical example of using executable architectures to support

operational planning involves defending against distributed denial of

service (DDoS) attacks. A denial of service attack floods a network with so

much traffic that legitimate traffic is blocked. This is analogous to jamming

a radio network. A distributed DoS attack is one that is launched from

many stations instead of a single station. (Mirkovic and Reiher 2004)

classify DDoS defense mechanisms as preventive, reactive, cooperation

degree and deployment location. An executable architecture can be used

to evaluate each type of mechanism. One prevention strategy is to place

“"forward deployed”" firewalls on the outbound ports of the main routers

as described in (Chatam 2004). The performance impacts of various

firewall configurations and placements are readily displayed though an

executable architecture. A typical reactive strategy is to simply reconfigure

the network and reroute traffic to a server that is (hopefully) not under a

DDoS attack. One autonomous means to mitigate a DDoS attack is to use

a dual-queue system, which automatically starts dropping traffic that

comes from untrusted hosts at the onset of an attack (Fletcher and Eoff

2004). All of these partial solution strategies to defend against DDoS

attacks can be systematically evaluated through an executable architecture.

Simultaneous events are only partially supported in UML2.0. I recommend

UML2.0 as MR, and DEVS as DR and SR. This is asserted in [11] as follows:

The DEVS formalism excels at modeling complex discrete event systems. A

framework capable of simulating a DEVS model is presented via UML state

machines. A set of rules is enumerated for the creation of UML models.

Adherence to these rules results in models that are both DEVS and UML

compliant. Resultant UML models are executable within DEVS simulation

frameworks such as DEVSJAVA. Such an approach to modeling in UML

represents a significant improvement over alternative approaches since it

enables earlier simulation and verification of a design.

Another reason for choosing the DEVS formalism as a means to M&S is its

reusability and composability. To-Be architecture products can be easily

developed on the basis of As-Is architecture products with minor changes and

additions.

This approach can be applied to determine the contribution of a C2 system or

capability to the overall capability of a fighting force.

Reference

1. Ring, Steven J., Lamar, B., Heim, J., Goyette, E. (2005), "Integrated Architecture-

Based Portfolio Investment Strategies"(10th ICCRTS), MITRE

2. Beal, Robert J., Hendrix, Jeremy P., McMurray, Garth P., Stewart, William C.

(2005). “Executable Architectures and their Application to a Geographically

Distributed Air Operations Center”(AFIT/GSE/ENY/05-M03). Air Force Institute of

Technology.

3. Behre, Christopher. "DoD Enterprise Architecture Conference Applied Joint

Mission Thread." USJFCOM.

4. DeStefano, G. V. (2004). “Agent Based Simulation SEAS Evaluation of DODAF

Architecture” (AFIT/GOR/ENS/04-05). Air Force Institute of Technology.

5. Griendling, K., Marvis, D. N. (2011). “Development of a DoDAF-Based Executable

Architecting Approach to Analyze System-of-Systems Alternatives.” IEEE. Paper

#1389, ver. 1.

6. Mittal, Saurabh. (2006). “Extending DoDAF to Allow Integrated DEVS-Based

Modeling and Simulation.” JDMS, vol. 3, Issue 2. pp. 95-123.

7. Pawlowski, T., Barr, P. C., Ring, S. J. (2004). “Applying Executable Architectures to

Support Dynamic Analysis of C2 Systems.” Command and Control Research and

Technology Symposium. San Diego. (June 15).

8. Ruegger, K. L. (2008). “Architecting a Net-Centric Operations System of Systems

for Multi-Domain Awareness.” Master’s Thesis, Naval Postgraduate School, CA.

9. Ryan, M. H., Hanoka, W. J. (2012). “A Study of Executable Model Based Systems

Engineering From DoDAF Using Simulink” (AFIT/GSE/ENV/12-S05DL). Air Force

Institute of Technology.

10. Zinn, A. W. (2004). “The Use of Integrated Architectures to Support Agent

Based Simulation: An Initial Investigation” (AFIT/GSE/ENY/04-M01). Air Force

Institute of Technology.

11. Mooney, J. (2008). "DEVS/UML - A Framework for Simulatable UML Models."

Master's Thesis, Arizona State University.

12. Hamilton, Jr., J. A. (2013). “Architecture-Based Network Simulation for Cyber

Security." Proceedings of the 2013 Winter Simulation Conference.

